In this document we will study how to train a convolutional neural network. First, we see how to train a single layer
neural network shown below.

The loss is given by f = ((w,w,, w3)T(o(sTx), c(uTx), c(vTx)) — y)zwhere o(x) is an activation function such as

sigmoid or relu. In this document we let a(x) be the sigmoid activation: o(x) = 1/(1 + e_x).

We optimize the loss with gradient descent by initializing all weights to random. We then

update each weight wwith w = w — ndf/dwuntil the loss converges. This is the same as moving the weight vector in
the direction of the negative gradient which gives the optimal direction to decrease the objective.

We call n the learning rate. This is usually a small value such as 0.1 when the search starts and we change it to a
smaller value as the number of epochs proceed. In other words, we want to take smaller step sizes as we approach

the local minima.

Thus we need only first derivatives to optimize neural network parameters to reach a local minimum.

In order to calculate the update equations let z, = c(sTx) = 0(51x1 + Szxz)' This means | can write f as

T 2
f=w,w,w,) (z,2,2z,) — y) . Then

T
df/dw1 = ZV(f)Z1 => same as df/dw1 = 2((W1, w, W3) (zl, Z, 23) -) z,

Thus we can write df/dw as

T
dffdw = (W, w,w)) (z,2,2) = V)(z,2,2,)
Now we calculate df/ds by doing the first coordinate df/ds1.

df/ds, = (df /dz)(dz /ds)

where df/dz = 2,/()w and dz /ds = do/ds = o(s)(1 — o(s))x

since do/df(x) = o(f())(1 — o(f(x))df/dx

df/ds, = (df/dz)(dz /ds)
where
df/dz, = 2\/(f)w and

dzl/ds2 = G(STX)(l - c(sTx))xZSince do/df(x) = o(f(x))(1 — o(f(x))df/dx

This means df/ds = (df/ds,df/ds)) = (2[(f),w,0(s D)L = o(s 0)x,, 2/(Hw,0(s DA — o(s 1))x,)

We can simplify into

df/ds = (df/ds, df /ds)) = 2[(F)w,(o(s DA — o(s'))x, 0(s DL — o(s D)x,) = 2/(Hw,0(s DA — (s V) (x,, x,)
In the same way, we calculate the updated weights for the other parameters U, U,V

What are df/du and df/dv (TODO for homework)?

The regularized objective would be to add the squared length of the hidden and final layer parameters.

f=(w,wyw) z,z,2) — ¥ + AWl + lIsIl” + 1l + 11911,

which can be expanded into

f=(Wow,w) (zpzyz) =0 + aw, +w) +w +s +s +u’+u’ +v +v))

2 1

Runtimes
Assume the input data has n rows and m columns.
Q1. What is the runtime of one iteration of our gradient descent algorithm for the above network?

To answer this question we need to get the runtime of updating w and s, u, and v. We also need the runtime to
calculate the objective.

Q2. What is the runtime of one iteration of our gradient descent algorithm for the above network with k hidden nodes?
Now your answer depends upon m, n, and k.

Answer: O(mnk) time to update hidden layer and O(nk) time to update the final layer - Can you derive it?

Now consider a simple convolutional neural network shown below. In this network our input images are 3x3 and we
have one 2x2 convolutional layer with average pooling

p1 | p2 |p3
z1 |z2
p4 | pS pé — —
z3 |z4 O
p7 [p8 [p9
3x3 input images 2x2 convolutional 2x2 average
layer pooling (and the

output layer)

We define the loss as the squared difference between the final layer and the desired output:
2
f = ((Zl + z, + z, + 24)/4 b))

We optimize this in the same way as we do a single layer network. We start with random weights and update each
with the gradient (first derivatives). Let our convolutional filter be

cl | c2

c3 | c4

Then z, = 0(c1p1 tcop, top, + C4p5) where o(x) is the sigmoid activation. We also have
z,= cs(clp2 tep,tep + c4p6).
Note that f is actually a function of ¢c1,c2,c3, and c4. Therefore | can write f as
f = ((cs(c1p1 +cp, +cp, + c4p5) + 0(c1p2 +ecp,tep+ c4p6) +
(r(clp4 tep tep, + c4p8) + (r(clp5 tep, tep,t c4p9))/4 - y)2
We then have
df/dc1 =1/2 * \F * (dzl/dc1 + dzz/dc1 + dzg/dc1 + dz4/dc1)
where

dz [dc = (dz /d)(d_/dc) = cf(clzo1 tep,+cp, +ep)d— 0(61101 +c,p, +cp, +c,p)p,

dzz/dc1 = cj(clp2 + c,p, + c,p, + c4p6)(1 - O‘(C1p2 + c,p, + c,p, + c4p6))p2
dz3/dc1 = 0(c1p4 tep tep, + c4p8)(1 — (r(clp4 tep tep, + c4pg))p4
dz4/dc1 = G(clp5 tep, tep,t c4p9)(1 — G(clp5 tep, tep,t c4p9))p5
Similarly, we calculate the gradient updates for parameters €y o C,e

df/dc,= (1/2) * [f * (dz /dc, + dz,/dc, + dz /dc, + dz /dc)

where

dzl/dc2 = cr(clp1 + c,p, + c,p, + c4p5)(1 c;(clp1 + c,p, + c,p, + (:4105));)2

dzz/dc2 = 0(clp2 + c,p, + c,p. + c4p6)(1 0(clp2 + c,p, + c,p. + 04196))103

dz,/dc, = cf(clp4 tecp +cp +cp)d 0'(C1p4 +c,p,+cp, +cp)p,

dz,/dc, G(clp5 tep, +cp,tcp) G(clp5 top,tcp,tc,p)p,

For c,we have (complete below on your own)

Exercises:

1. Calculate the gradient update equations for the network below. Instead of average pooling we flatten the output
of the convolution and give it to a linear classifier w. First, write the loss function and then calculate the first
derivatives. Here w=(w1,w2,w3,w4) is a four-dimensional vector.

p1 | p2 [p3 210
z1 |22 22@_\

p4 |p5 [p6 | — —— D ——
z3 |z4 20—

p7 |p8 |p9 24y

3x3 input images 2x%2 convolutional Flatten output

layer

What is the loss function?
Solution:

We start with the loss for the simpler network where we average the outputs:
f = ((cs(clp1 tep,+cep, tep) + cr(clp2 tep,tep. tep)
2
cr(clp4 tep, e tep) + 0(clp5 tep,tep,tep)/t —y)
We modify this for the new network in this exercise
_ T 2
f=zp2p2p2) W,wyw,w,) —)
Now we need update equations. Writing out the loss in terms of the variables we see
f = (cs(clp1 tep,tep, + c4ps)w1 + G(clp2 tep,tep t c4p6)w2 +
2
0(C1p4 tep tep, + (:4;)8)w3 + 0(C1p5 tep, tep,t C4p9)W4 - y)
df /dc = 2\/jif(w1cy(clp1 tep,+cp, +cp)(l— cs(clp1 tcep,+cp, tep)p +
W20(01p2 tep,tep + c4p6)(1 - cs(clp2 tep,tep + C4p6))p2 +

W3(5(C1p4 + c,p. + c.p, + c4p8)(1 — cs(clp4 + c,p. + c.p, + c4pg))p4 +

W4G(Clp5 tep,+cp,+ep)(l— cs(clp5 tep,+cp,tc,p)p)
df/dw = 2\5(5(01191 +cp,+cp, +c,p)

Similarly, we can calculate the updates for the other variables.

2. Calculate the gradient update equations if the network has two 2x2 convolutional filters as shown below. The
output of each filter is averaged and then averaged again.

pl1 | p2 |p3 z1 [z2 C‘
73 |zd
p4 | p5_|pB — — 0
p7 |p8 ||D5‘ zh |z6 O
Z7 |z8
3x3 input images 252 convolutional Global average Average

layer (2 filters) pooling

Suppose our convolutional kernels are:

cl | c2
c3 | c4
c5 | c6
c7 | c8

Below is the objective for one convolution.
f = ((cs(clp1 tep,+cep, tep) + cs(clp2 tep,tep.tep) +

2
0(clp4+czp5+c3p7+c4p8) + G(clp5+c2p6+03p8+c4p9))/4 -)

We can modify this to do two convolutions.
f=(((cf(clp1 tcp,+cep, tep) + o(clp2 tep,tep.tep) +

cr(clp4 + c,p. + c.p, + c4p8) + 0(clp5 + c,p, + C.p, + c4p9))/4 +
(0(65p1 + c.p, + c.p, + Csps) + 0(05p2 + b, + c.p, + c8p6)+

2
(5(c5p4 tep, +cop tep) + 0'(C5p5 tep,+op,tep))/4)/2 = y)

df/dc, =f/4(dz [dc + dz,/dc + dz /dc + dz,/dc)

where

dz [dc = cj(clp1 +cp,+cp, +cp)d 0(c1p1 +tecp,+cp, tep)p,

dz,/dc = (r(clp2 +ecp,+cp. +ep)d 0(clp2 +ecp, +cp.tc,p)p,

dz,/dc = G(clp4 +ecp t+cp +cp)d G(clp4 tecp t+cp, tep)p,

dz,/dc = cr(clp5 +c,p,+cp,tep)d cr(clp5 +c,p,+cp, tC,p)p,

Similarly, we can do the update for the other parameters. What is the update for c5? We define z5, z6, z7, and z8 as
we did z1, z2, z3, and z4. Then we have

df/dc5 = \/]7/4(dzs/dc5 + dz6/dc5 + dz7/dc5 + dzg/dcs)

where

dzs/dc5 = O‘(C5p1 + c.p, + c.p, + Csps)(l — cf(csp1 + c.p, + c.p, + CBpS))p1

dz{)/dc5 = G(Csz + c.p, + c.p. + c8p6)(1 G(C5p2 + c.p, + c.p. + c8p6))p2

dz7/dc5 = O'(C5p4 + c.p, + c.p, + c8p8)(1 0'(C5p4 + c.p, + c.p, + cspg))p4

dzg/dc5 = cr(csp5 + (o + Py + cgpg)(l cr(csp5 + cp, + Py + 08109));)5

3. Calculate the gradient update equations if the network has two 2x2 convolutional filters as shown below. The
output of each filter is averaged and given to a linear classifier w=(w1,w2). As we did the optimization for (2)
above, can you derive the updates for the network in this problem?

pl | p2 ||:|3 z1 |z2 O
z3 |z4
p4 | p5 |p6 - S ~ o .
z5 |z6 W
p7 |8 |p9 o -
Z7 |z8
3x3 input images 2x2 convolutional Global average Linear
layer (2 filters) pooaling classifier

4. What is the objective of the network below? Instead of average pooling we just flatten the output from the
convolutional filters.

O
pl1 | p2 |p3 z1 |z2 C'\
|
3 |zd \
p4 | p5 |p6 e 0=
O EE—
z5 |z6 T W
p7 |p8 |p9 QO =
Z7 |z8 O
3x3 input images 2% convolutional O Linear
layer (2 filters OR a Flatten classifier
filter with features

outchannels=2)

